Representation of cyclic groups in positive characteristic and Weierstrass semigroups
نویسندگان
چکیده
منابع مشابه
Vinberg’s θ-groups in positive characteristic and Kostant-Weierstrass slices
We generalize the basic results of Vinberg’s θ-groups, or periodically graded reductive Lie algebras, to fields of good positive characteristic. To this end we clarify the relationship between the little Weyl group and the (standard) Weyl group. We deduce that the ring of invariants associated to the grading is a polynomial ring. This approach allows us to prove the existence of a KW-section fo...
متن کاملCharacteristic Kernels on Groups and Semigroups
Embeddings of random variables in reproducing kernel Hilbert spaces (RKHSs) may be used to conduct statistical inference based on higher order moments. For sufficiently rich (characteristic) RKHSs, each probability distribution has a unique embedding, allowing all statistical properties of the distribution to be taken into consideration. Necessary and sufficient conditions for an RKHS to be cha...
متن کاملWeierstrass semigroups from Kummer extensions
The Weierstrass semigroups and pure gaps can be helpful in constructing codes with better parameters. In this paper, we investigate explicitly the minimal generating set of the Weierstrass semigroups associated with several totally ramified places over arbitrary Kummer extensions. Applying the techniques provided by Matthews in her previous work, we extend the results of specific Kummer extensi...
متن کاملcompactifications and representations of transformation semigroups
this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...
15 صفحه اولNon-Commutative Formal Groups in Positive Characteristic
We describe geometric non-commutative formal groups in terms of a geometric commutative formal group with a Poisson structure on its splay algebra. We describe certain natural properties of such Poisson structures and show that any such Poisson structure gives rise to a non-commutative formal group. We describe geometric non-commutative formal groups in terms of a geometric commutative formal g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2013
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2012.05.039